
Security Assessment

Jungle Exchange
CertiK Assessed on Jun 4th, 2024

Executive Summary

Vulnerability Summary

0 Critical

Critical risks are those that impact the safe functioning

of a platform and must be addressed before launch.

Users should not invest in any project with outstanding

critical risks.

1 Major 1 Acknowledged
Major risks can include centralization issues and logical

errors. Under specific circumstances, these major risks

can lead to loss of funds and/or control of the project.

10 Medium 5 Resolved, 5 Acknowledged Medium risks may not pose a direct risk to users’ funds,

but they can affect the overall functioning of a platform.

12 Minor 4 Resolved, 8 Acknowledged

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient

than other solutions.

0 Informational

Informational errors are often recommendations to

improve the style of the code or certain operations to

fall within industry best practices. They usually do not

affect the overall functioning of the code.

SUMMARY JUNGLE EXCHANGE

CertiK Assessed on Jun 4th, 2024

Jungle Exchange

The security assessment was prepared by CertiK, the leader in Web3.0 security.

TYPES

DeFi

ECOSYSTEM

Ethereum (ETH)

METHODS

Manual Review, Static Analysis

LANGUAGE

Solidity

TIMELINE

Delivered on 06/04/2024

KEY COMPONENTS

N/A

CODEBASE
jungle-synthetics

View All in Codebase Page

COMMITS
87e36f11f12b750b5613cb514357ddc664d70392

View All in Codebase Page

23
Total Findings

9
Resolved

0
Mitigated

0
Partially Resolved

14
Acknowledged

0
Declined

https://github.com/jungle-official/jungle-synthetics/tree/87e36f11f12b750b5613cb514357ddc664d70392/contracts
https://github.com/jungle-official/jungle-synthetics/tree/87e36f11f12b750b5613cb514357ddc664d70392/contracts

TABLE OF CONTENTS JUNGLE EXCHANGE

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Findings

COR-04 : Centralization Related Risks

COR-01 : No Upper Limit for Fee

COR-02 : Variable Usage Before Setting Value

JSB-01 : Incorrect Parameter Usage in `validatePosition` Function

JSB-02 : Incorrect Handling of Decreased Position in `decreaseOpenInterest` Function

JUN-02 : Unchecked Return Value in `isClose` Function

JUN-03 : Unauthorized Cancellation of Keeper's Orders in `cancelLimitOrder` Function

LPA-03 : Inconsistent Access Control Leading to Function Unavailability

LPA-07 : The variable `poolStates` is not updated when performing liquidation

LPM-01 : Lack of Access Control

PFB-01 : Missing Validation on The Return Value of Oracle

CON-01 : Possible integer overflow and dead loop

COR-03 : Question related to bid-ask spread

COR-05 : Contradictory Implementation in Matching Mechanism

GLOBAL-01 : Missing Implementation of Individual Pool Priority

JUN-04 : The Surplus Native Tokens Are Not Returned

JUN-05 : Potential Orders Filled At Worse Prices

LPA-06 : Potential logical inconsistencies `liquidatePosition` and `adl`

LPA-08 : Potential Average Price Is Not Correct

LPM-02 : Potential Allow Unauthorized Withdrawals In `claimReward` Function

LPM-03 : Incorrect Boolean Expression

MTB-01 : Missing Service Fee Handling Mechanism

PFB-02 : Third-Party Dependency Usage

Appendix

TABLE OF CONTENTS JUNGLE EXCHANGE

Disclaimer

TABLE OF CONTENTS JUNGLE EXCHANGE

CODEBASE JUNGLE EXCHANGE

Repository

jungle-synthetics

Commit

87e36f11f12b750b5613cb514357ddc664d70392

CODEBASE JUNGLE EXCHANGE

https://github.com/jungle-official/jungle-synthetics/tree/87e36f11f12b750b5613cb514357ddc664d70392/contracts
https://github.com/jungle-official/jungle-synthetics/tree/87e36f11f12b750b5613cb514357ddc664d70392/contracts

AUDIT SCOPE JUNGLE EXCHANGE

18 files audited 7 files with Acknowledged findings 2 files with Resolved findings 9 files without findings

ID Repo File SHA256 Checksum

JUN

jungle-

official/jungle-

synthetics

core/Jungle.sol
e88e7a2f89c977deff62ca09e8ac45ed1fc49c0

54f4c5847b060c15d81daf5fb

JSB

jungle-

official/jungle-

synthetics

core/JungleSetting.sol
0b69536a3714f4c70850d1b7d1c94df3e8d51

822f0d5b8e118a8fc7790de954b

LPM

jungle-

official/jungle-

synthetics

core/LPManager.sol
ece1b5ae7c1c57c718937d4e1bff8c6d5a27a5

aea84372f39d7042e56b1b3a7f

LPA

jungle-

official/jungle-

synthetics

core/LPMarket.sol
458432417a3571593215006682c9b17cdc25

0411ccc08b7daacab375a47cdcd8

MTB

jungle-

official/jungle-

synthetics

core/MarketTick.sol
e5dba276cf8aa4892e44742b56eb7291baed8

0e39409ce5402ad5ddedb195930

PFB

jungle-

official/jungle-

synthetics

core/PriceFeed.sol
577ce7b17ca07e2773b9dae0e7e9f8b8e7edf

8d0e3c5bee790b00463601583b5

VAU

jungle-

official/jungle-

synthetics

core/Vault.sol
9306e03c85e914d7a7ee4a91b40559dbd9a3

65bb4b7d8af537995680a94db4d8

JRB

jungle-

official/jungle-

synthetics

periphery/JungleReader.sol
25e34b4a4fe6e750ac2e8e4d9e1258491aa13

d93d2968f9e970a28af0eb343d3

LPR

jungle-

official/jungle-

synthetics

periphery/LPReader.sol
c3500fd2bf218f95aba7ed30556b49cf11b121

afca93a3e9b82a13ce28571c63

AUDIT SCOPE JUNGLE EXCHANGE

ID Repo File SHA256 Checksum

JUS

jungle-

official/jungle-

synthetics

core/JUSD.sol
a990ab4134dfefe2c98c2cb19c748757c67447

4a3e05432bb8d388b9504ccd02

LPD

jungle-

official/jungle-

synthetics

core/LPMarketDeployer.sol
0809e7b1fc2fdf72696a01bb709bd15d81f94e

859652a1a45a24439ca5271b0e

LPT

jungle-

official/jungle-

synthetics

core/LPTickDeployer.sol
a4d101b656b54ce52b1345a42b8b76682ff99

78c4467b2d07afced92ea39a33a

BMB

jungle-

official/jungle-

synthetics

core/library/BitMath.sol
6a7de242ba91281bef281e4dacc8373675515

2b85d8522a18a18728858d09ea9

LMA

jungle-

official/jungle-

synthetics

core/library/LPMarketAddr.sol
bb9ad8be75521846ff401b74ab87a8a548bc1

2c1952957d973ef5993bbcf3873

POS

jungle-

official/jungle-

synthetics

core/library/Positions.sol
c82814d482091d0d991f64b1db25ceba9806c

ffa380bab64354e97d554997509

TBB

jungle-

official/jungle-

synthetics

core/library/TickBitmap.sol
35bd83052e34cdfa4da579e5b2202a898ba35

b54885e0b7b35ab25f066e829f0

TMB

jungle-

official/jungle-

synthetics

core/library/TickMath.sol
498f76536e80d5c27fb785e7784e83482472b

bd4196389603a5fea7ccb42ae06

CON

jungle-

official/jungle-

synthetics

periphery/Constants.sol
c82096322759d97495ea9e8b4def8453de0fc

53c151bf074c98fc861494160b4

AUDIT SCOPE JUNGLE EXCHANGE

APPROACH & METHODS JUNGLE EXCHANGE

This report has been prepared for Jungle Exchange to discover issues and vulnerabilities in the source code of the Jungle

Exchange project as well as any contract dependencies that were not part of an officially recognized library. A comprehensive

examination has been performed, utilizing Manual Review and Static Analysis techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced by industry

leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend addressing these

findings to ensure a high level of security standards and industry practices. We suggest recommendations that could better

serve the project from the security perspective:

Testing the smart contracts against both common and uncommon attack vectors;

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in public;

Provide more transparency on privileged activities once the protocol is live.

APPROACH & METHODS JUNGLE EXCHANGE

FINDINGS JUNGLE EXCHANGE

This report has been prepared to discover issues and vulnerabilities for Jungle Exchange. Through this audit, we have

uncovered 23 issues ranging from different severity levels. Utilizing the techniques of Manual Review & Static Analysis to

complement rigorous manual code reviews, we discovered the following findings:

ID Title Category Severity Status

COR-04 Centralization Related Risks Centralization Major Acknowledged

COR-01 No Upper Limit For Fee Logical Issue Medium Resolved

COR-02 Variable Usage Before Setting Value Logical Issue Medium Acknowledged

JSB-01
Incorrect Parameter Usage In

validatePosition Function
Logical Issue Medium Acknowledged

JSB-02
Incorrect Handling Of Decreased Position

In decreaseOpenInterest Function
Logical Issue Medium Resolved

JUN-02
Unchecked Return Value In isClose

Function
Logical Issue Medium Acknowledged

JUN-03
Unauthorized Cancellation Of Keeper's

Orders In cancelLimitOrder Function
Logical Issue Medium Resolved

LPA-03
Inconsistent Access Control Leading To

Function Unavailability

Inconsistency, Access

Control
Medium Resolved

LPA-07
The Variable poolStates Is Not

Updated When Performing Liquidation
Logical Issue Medium Acknowledged

LPM-01 Lack Of Access Control Access Control Medium Resolved

PFB-01
Missing Validation On The Return Value

Of Oracle
Volatile Code Medium Acknowledged

FINDINGS JUNGLE EXCHANGE

23
Total Findings

0
Critical

1
Major

10
Medium

12
Minor

0
Informational

ID Title Category Severity Status

CON-01
Possible Integer Overflow And Dead

Loop
Logical Issue Minor Resolved

COR-03 Question Related To Bid-Ask Spread Logical Issue Minor Resolved

COR-05
Contradictory Implementation In

Matching Mechanism
Design Issue Minor Acknowledged

GLOBAL-01
Missing Implementation Of Individual

Pool Priority
Design Issue Minor Acknowledged

JUN-04
The Surplus Native Tokens Are Not

Returned
Design Issue Minor Acknowledged

JUN-05 Potential Orders Filled At Worse Prices Logical Issue Minor Acknowledged

LPA-06
Potential Logical Inconsistencies

liquidatePosition And adl
Logical Issue Minor Acknowledged

LPA-08 Potential Average Price Is Not Correct Logical Issue Minor Resolved

LPM-02
Potential Allow Unauthorized

Withdrawals In claimReward Function
Logical Issue Minor Acknowledged

LPM-03 Incorrect Boolean Expression Logical Issue Minor Acknowledged

MTB-01
Missing Service Fee Handling

Mechanism
Design Issue Minor Resolved

PFB-02 Third-Party Dependency Usage Design Issue Minor Acknowledged

FINDINGS JUNGLE EXCHANGE

COR-04 CENTRALIZATION RELATED RISKS

Category Severity Location Status

Centralization Major

core/Jungle.sol: 74, 78, 267, 651, 751; core/JungleSetting.s

ol: 94, 98, 103, 108, 114, 125, 131, 135, 140, 149, 446, 459, 4

92, 514; core/LPManager.sol: 75, 79; core/LPMarket.sol: 10

7, 112, 140, 144, 181, 243, 958, 975, 996, 1027; core/MarketT

ick.sol: 96, 102, 106, 345, 420, 638, 645, 663, 797, 808, 835,

880, 898, 921; core/PriceFeed.sol: 22; core/Vault.sol: 33, 37,

41, 46

Acknowledged

Description

In the contract Vault the role _owner has authority over the functions shown in the diagram below. Any compromise to

the _owner account may allow the hacker to take advantage of this authority and set Jungle and LPManager address.

Authenticated Role

Function State Variables

Function State Variables
_owner

setLPmanager

setJungle

lpManagerAddress

jungleAddress

In the contract Vault the role jungleAddress has authority over the functions shown in the diagram below. Any

compromise to the jungleAddress account may allow the hacker to take advantage of this authority and transfer in/out

JUSD to/from the vault.

COR-04 JUNGLE EXCHANGE

Authenticated Role

Function

Function External Calls

External Calls

External Calls

External Calls

jungleAddress

takeJUSDIn

takeJUSDOut

JUSD.transferFrom

JUSD.allowance

JUSD.balanceOf

JUSD.transfer

In the contract Vault the role lpManager has authority over the functions shown in the diagram below. Any compromise to

the lpManager account may allow the hacker to take advantage of this authority and transfer in/out JUSD to/from the vault.

Function

External Calls

Authenticated Role

Function

External Calls

External Calls

External Calls

takeJUSDOut

JUSD.balanceOf

JUSD.transfer

lpManager

takeJUSDIn JUSD.transferFrom

JUSD.allowance

COR-04 JUNGLE EXCHANGE

In the contract PriceFeed the role _owner has authority over the functions shown in the diagram below. Any compromise

to the _owner account may allow the hacker to take advantage of this authority and set aggregators and

tokenDecimals .

Function

State Variables

Internal Calls

Authenticated Role External Calls

External Calls

updateAddresses

tokenDecimals

aggregators

AggregatorV3Interface

.decimals

decimals

_owner

In the contract MarketTick the role lpMarket has authority over the functions shown in the diagram below. Any

compromise to the lpMarket account may allow the hacker to take advantage of this authority, setting significant

parameters and invoking critical functions.

COR-04 JUNGLE EXCHANGE

Authenticated Role

Function

State Variables

Function

State Variables

Function

State Variables

Function

State Variables

Function

State Variables

Function

State Variables

Internal Calls

Function State Variables

External Calls

Function Internal Calls

External Calls

Function

Function State Variables

External Calls

Internal Calls

External Calls

Internal Calls

Internal Calls

Internal Calls

Function

State Variables

External Calls

External Calls

Function State Variables

lpMarket

updateCreatePosTick

updateRewardsWhenLiqChg

removeLiquidity

setBaseContractSize

updateLiquidity

updateRewardsWhenFeeChg

recordPeriodCumulativeReward

addLiquidity

claimReward

updateLP

updateClosePosTick

updateRewardRates

initPool

setRewardInterval

slot

TickBitmap.flipTick

.push

TickBitmap.isInitialized

poolRewards

poolJUSDBalances

poolLPBalances

poolJUSDTotalSupply

poolLPTotalSupplys

baseContractSize

slot

TickMath.getTickAtAmount

_updateTickInfo

poolRewards

Positions.getPositionFee

ILPMarket.takerFeeRate

poolJUSDBalances

poolLPBalances

poolJUSDTotalSupply

poolLPTotalSupplys

getClaimableReward

getLastPeriodRewardTimeAndRewardRate

slot

tickPositions

searchNextPosTick

poolCreateTime

rewardInterval

COR-04 JUNGLE EXCHANGE

In the contract LPMarket the role jungle has authority over the functions shown in the diagram below. Any compromise to

the jungle account may allow the hacker to take advantage of this authority.

Function

Internal Calls

Function Internal Calls

Authenticated Role

External Calls

Internal Calls

External Calls

Internal Calls

Internal Calls

External Calls

matchLiquidityIndexToken

_senderCallback

IMarketTick.getTickBorder

MatchStepParam

IMarketTick.searchNextPriceTick

_matchOneTick

MatchParam

decreasePositions _decreasePositionWithoutMatch

IPriceFeed.getPrice

jungle

In the contract LPMarket the role lpManager has authority over the functions shown in the diagram below. Any

compromise to the lpManager account may allow the hacker to take advantage of this authority and set jungle ,

poolState , takerFeeRate , and invoke critical functions.

COR-04 JUNGLE EXCHANGE

Function

State Variables

Authenticated Role

Function

Function Internal Calls

Function

External Calls

Internal Calls

Function
Internal Calls

Function

Function

External Calls

Internal Calls

External Calls

Internal Calls

Function
State Variables

Function State Variables

External Calls

Internal Calls

Function

External Calls

Internal Calls

External Calls

External Calls

Internal Calls

External Calls

Internal Calls

Internal Calls

External Calls

External Calls

External Calls

setPool

baseContractSize

marketName

strategies

_updatePoolTick

IMarketTick.initPool

IMarketTick.setBaseContractSize

lpManager

matchLiquidityIndexToken

liquidatePosition

removeLiquidity

decreasePositions

claimReward

addLiquidity

setTakerFeeRate

setJungle

adl

_senderCallback

IMarketTick.getTickBorder

MatchStepParam

IMarketTick.searchNextPriceTick

_matchOneTick

MatchParam

_liquidatePosition

validateLiquidation

IMarketTick.removeLiquidity

IMarketTick.updateLP

IMarketTick.poolLPTotalSupplys

getRemoveLiquidityParam

_decreasePositionWithoutMatch

IPriceFeed.getPrice

IMarketTick.claimReward

getNetValue

IMarketTick.addLiquidity

takerFeeRate

jungle

IMarketTick.validateLiquidation

COR-04 JUNGLE EXCHANGE

In the contract LPManager the role _owner has authority over the functions shown in the diagram below. Any compromise

to the _owner account may allow the hacker to take advantage of this authority and set marketManagers[_indexToken]

[_manager] .

Authenticated Role

Function State Variables

Function State Variables
_owner

setPoolManager

setJungle

marketManagers

jungle

In the contract JungleSetting the role _jungle has authority over the functions shown in the diagram below. Any

compromise to the _jungle account may allow the hacker to take advantage of this authority, increasing/decreasing open

interest, changing cumulative funding rate.

COR-04 JUNGLE EXCHANGE

Function

State Variables

Function
Internal Calls

Function

State Variables

Internal Calls

Authenticated Role

Function

State Variables

External Calls
Function

increaseOpenInterest

openInterestPerUser

openInterestPerAsset

openInterestAssetPerSide

openInterestPerSide

emitDecreasePositionEvent
getPositionFee

Positions.getPositionKey

updateCumulativeFundingRate

cumulativeShortFundingRates

lastFundingTimes

cumulativeLongFundingRates

cumulativePrices

getAvgFundingRate

_jungle

decreaseOpenInterest

emitIncreasePositionEvent

openInterestPerUser

openInterestPerAsset

openInterestAssetPerSide

openInterestPerSide

In the contract JungleSetting the role _keeper has authority over the functions shown in the diagram below. Any

compromise to the _keeper account may allow the hacker to take advantage of this authority and increase

cumulativePrices .

Authenticated Role Function State Variables

_keeper addCumulativePrice cumulativePrices

In the contract JungleSetting the role _owner has authority over the functions shown in the diagram below. Any

compromise to the _owner account may allow the hacker to take advantage of this authority and set keepers, jungle ,

marginFeeBasisPoints and other significant global variables.

COR-04 JUNGLE EXCHANGE

Authenticated Role

Function State Variables

Function State Variables

Function State Variables

Function State Variables

Function State Variables

Function State Variables

Function State Variables

Function State Variables

_owner

setKeeper

setTickSize

setJungle

setFundingInterval

setMarginFee

setLeverage

setCryptoInfo

setContractSizes

keepers

tickSizes

jungle

fundingInterval

marginFeeBasisPoints

minLeverages

maxLeverages

cryptoOpenings

contractSizes

In the contract Jungle the role _keeper has authority over the functions shown in the diagram below. Any compromise to

the _keeper account may allow the hacker to take advantage of this authority, triggering auto-deleveraging and executing

limit orders.

COR-04 JUNGLE EXCHANGE

Function

External Calls

External Calls

Internal Calls

Function Internal Calls

Authenticated Role

External Calls

External Calls

Internal Calls

External Calls

External Calls

adl

priceFeed.getPrice

Positions.getPositionKey

_liquidatePosition

ILPMarket.decreasePositions

LPMarketAddr.computeAddress

ILPMarket.marketName

jungleSetting.updateCumulativeFundingRate

executeLimitOrder cancleLimitOrder

_executeLimitOrderInternal

_keeper

In the contract Jungle the role _owner has authority over the functions shown in the diagram below. Any compromise to

the _owner account may allow the hacker to take advantage of this authority and set minExecutionFee and keepers .

COR-04 JUNGLE EXCHANGE

Function State Variables

Function State Variables

Function External Calls

Authenticated Role

setMinExecutionFee minExecutionFee

setKeeper keepers

transferToKeeper _receiver.call

_owner

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of

decentralization, which in most cases cannot be resolved entirely at the present stage. We advise the client to carefully

manage the privileged account's private key to avoid any potential risks of being hacked. In general, we strongly recommend

centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-contract-based accounts

with enhanced security practices, e.g., multisignature wallets.

Indicatively, here are some feasible suggestions that would also mitigate the potential risk at a different level in terms of short-

term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a single point of key

management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key

compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public

audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

COR-04 JUNGLE EXCHANGE

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviation

[Jungle Exchange Team, 04/07/2024]: Issue acknowledged. I won't make any changes for the current version.

We will consider Timelock and multi-signature in our contracts.

[CertiK, 04/07/2024]: It is suggested to implement the aforementioned methods to avoid centralized failure. Also, CertiK

strongly encourages the project team to periodically revisit the private key security management of all addresses related to

centralized roles.

COR-04 JUNGLE EXCHANGE

COR-01 NO UPPER LIMIT FOR FEE

Category Severity Location Status

Logical Issue Medium core/Jungle.sol: 74~75; core/LPMarket.sol: 140~141 Resolved

Description

There are no upper boundaries for function setMinExecutionFee and setTakerFeeRate , which is used to set

minExecutionFee and takerFeeRate . It is possible to set the total fee rate up to any arbitrary amount. In the contract

Jungle the role _owner has authority over the function setMinExecutionFee . Any compromise to the _owner account

may allow the hacker to take advantage of this authority and set the total fee rate up to any arbitrary amount.

In the contract LPMarket the role lpManager has authority over the function setTakerFeeRate . Any compromise to the

lpManager account may allow the hacker to take advantage of this authority and set the total fee rate up to any arbitrary

amount.

Recommendation

Introduce a maximum fee threshold in the function to ensure fee values remain within acceptable limits. This safeguard will

provide predictability and fairness in fee-related operations.

Alleviation

[Jungle Exchange Team, 04/07/2024]: The team heeded the advice and resolved the issue in commit:

558d3ede2271c792754c595c7da7c73f73f70e6b.

COR-01 JUNGLE EXCHANGE

COR-02 VARIABLE USAGE BEFORE SETTING VALUE

Category Severity Location Status

Logical

Issue
Medium

core/JungleSetting.sol: 23, 36, 42; core/MarketTick.sol: 30, 31, 3

2
Acknowledged

Description

This issue pertains to a situation in which a contract utilizes a variable before setting its value, leading to potential errors and

unexpected behavior in the contract's execution.

Recommendation

We recommend setting a suitable value before using the state variable.

Alleviation

[Jungle Exchange Team, 04/07/2024]: The team acknowledged the finding.

COR-02 JUNGLE EXCHANGE

JSB-01 INCORRECT PARAMETER USAGE IN validatePosition

FUNCTION

Category Severity Location Status

Logical Issue Medium core/JungleSetting.sol: 299, 308, 317 Acknowledged

Description

The validatePosition function is responsible for verifying the size of the current position or additional position being

opened. However, it incorrectly utilizes the _size parameter to represent the total sum of all user positions, rather than the

size of the current additional position being added.

299 openInterestPerSide[_isLong] + _size <=

300 (

301 maxOpenInterestPerSide[_isLong] > 0

302 ? maxOpenInterestPerSide[_isLong]

303 : DEFAULT_MAX_OPEN_INTEREST

304),

305 "exceed max open interest per side"

306);

Recommendation

Adjust the parameter usage to correctly reflect the size of the position being evaluated. Implement thorough testing to

validate the correctness of the function's behavior under various scenarios.

Alleviation

[Jungle Exchange Team, 04/07/2024]: The team acknowledged the finding.

JSB-01 JUNGLE EXCHANGE

JSB-02 INCORRECT HANDLING OF DECREASED POSITION IN
decreaseOpenInterest FUNCTION

Category Severity Location Status

Logical Issue Medium core/JungleSetting.sol: 473 Resolved

Description

The decreaseOpenInterest() function is utilized to decrease multiple contract variables openInterestPerAsset ,

openInterestPerSide , openInterestAssetPerSide tracking user position quantity information when a user's position

decreases. However, when the position to be decreased exceeds a certain variable's value, instead of assigning it to 0, the

variable is decreased by 0. These variables impact the calculation result of fundingfee .

473 openInterestPerAsset[_token] -= 0;

479 openInterestPerSide[_isLong] -= 0;

485 openInterestAssetPerSide[_token][_isLong] -= 0;

Recommendation

Ensure that when a position decreases, variables are appropriately adjusted, including assigning them to 0 when necessary.

Alleviation

[Jungle Exchange Team, 04/07/2024]: The team heeded the advice and resolved the issue in commit:

c47c947e9a4a6e0e9fbfad59c49d65c9663ba83f.

JSB-02 JUNGLE EXCHANGE

JUN-02 UNCHECKED RETURN VALUE IN isClose FUNCTION

Category Severity Location Status

Logical Issue Medium core/Jungle.sol: 119, 366 Acknowledged

Description

The isClose function is designed to verify whether the current indexToken has been closed. It returns a boolean value

indicating the status. However, the return value of this function is not being checked within the code. Consequently, even if

the market for the indexToken has been closed, users can still proceed to open positions.

Recommendation

Implement a function to validate the return value of the isClose function to ensure that users cannot open positions if the

market for the corresponding indexToken has been closed.

Alleviation

[Jungle Exchange Team, 04/07/2024]: Issue acknowledged. I won't make any changes for the current version.

In current version, all indexTokens will be open. But we will fix it in the future version if necessary.

JUN-02 JUNGLE EXCHANGE

JUN-03 UNAUTHORIZED CANCELLATION OF KEEPER'S ORDERS
IN cancelLimitOrder FUNCTION

Category Severity Location Status

Logical Issue Medium core/Jungle.sol: 310 Resolved

Description

The cancelLimitOrder() function, designed to cancel user limit orders, contains a logic flaw that allows unauthorized

cancellation of orders belonging to a Keeper. When parameter _account with Keeper privileges is provided, anyone can

cancel orders associated with that Keeper.

310 if(keepers[_account]) account = _account;

Proof of Concept

JUN-03 JUNGLE EXCHANGE

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

interface Jungle {

 function cancleLimitOrder(address _account,

 uint256 _index, bool _isIncrease

) external;

}

contract CancleTheOrder {

 Jungle public jungle;

 ... other logic set keepers

 function cancle() external {

 ... other logic

 jungle.cancleLimitOrder(keeper, _index, _isIncrease);

 bytes32 key = Positions.getRequestKey(keeper, _index);

 IncreasePositionRequest memory request =

jungle.increasePositionRequests(key);

 require(request.indexToken == bytes32(0), "request not exists");

 ... other logic

 }

}

Recommendation

We recommend checking account in the if condition instead of _account .

Alleviation

[Jungle Exchange Team, 04/07/2024]: The team heeded the advice and resolved the issue in commit:

3b9736bd8043b7f0dd53a63a1d39c9b152ff0cba.

JUN-03 JUNGLE EXCHANGE

LPA-03 INCONSISTENT ACCESS CONTROL LEADING TO
FUNCTION UNAVAILABILITY

Category Severity Location Status

Inconsistency, Access Control Medium core/LPMarket.sol: 838, 1098 Resolved

Description

A smart contract includes a function with access control mechanisms that restrict its usage to only accounts with specific

roles. However, this function is being invoked by another, higher-level function that lacks similar access controls. As a result,

unauthorized users attempting to call the higher-level function will fail due to the access control enforced on the underlying

function, leading to a malfunction in the intended use of the contract.

Recommendation

Review and revise the access control logic to ensure that any function calling the restricted function also has appropriate

access controls in place. This will prevent unauthorized access at any level of the function call hierarchy.

Alleviation

[Jungle Exchange Team, 04/07/2024]: The team heeded the advice and resolved the issue in commit:

f58dabdb0a461e8b5cf30074dc9d553b03f82d2c.

LPA-03 JUNGLE EXCHANGE

LPA-07 THE VARIABLE poolStates IS NOT UPDATED WHEN

PERFORMING LIQUIDATION

Category Severity Location Status

Logical Issue Medium core/LPMarket.sol: 1073 Acknowledged

Description

In the commit ef6f80413c5c1260b33c0ebe8017314c6abb2c69 : The liquidatePosition() function allows the Manager to

clear positions in the proxy pool. However, there is a logic problem at line 1073, where if the liquidation status does not equal

3, the lpPositions[_posId] variable is cleared without updating poolStates[_poolId] . This inconsistency can result in

inaccurate profit calculations for the proxy pool.

1073 _updatePackedPositionX(

1074 _poolId,

1075 !lpPosition.isLong,

1076 false,

1077 lpPosition.averagePrice,

1078 lpPosition.contractSize,

1079 lpPosition.collateral

1080);

1081

1082 emit ClosePosition(

1083 indexToken,

1084 _poolId,

1085 _posId,

1086 _calcuPositionSize(lpPosition.contractSize, entryPrice),

1087 entryPrice,

1088 data,

1089 lpPosition.isLong,

1090 false

1091);

1092 delete lpPositions[_posId];

Recommendation

Review the logic in the liquidatePosition() function to ensure consistency in variable updates. Make sure that all related

variables, such as poolStates[_poolId] , are updated during the liquidation process to prevent errors in profit calculations.

Alleviation

[Jungle Exchange Team, 05/13/2024]: Issue acknowledged. I won't make any changes for the current version. In this case

liquidation status does not equal 3, we don't need to update poolStates[_poolId] for there is no extra collateral needed to give

LPA-07 JUNGLE EXCHANGE

back to poolStates.

LPA-07 JUNGLE EXCHANGE

LPM-01 LACK OF ACCESS CONTROL

Category Severity Location Status

Access Control Medium core/LPManager.sol: 94 Resolved

Description

The function createMarket() can be called by anyone as it has no access restriction. This enables anyone to call this and

create the market.

Recommendation

It's important to implement proper access control mechanisms to protect against such vulnerabilities, such as using a

modifier to control who can call this function.

Alleviation

[Jungle Exchange Team, 04/07/2024]: The team heeded the advice and resolved the issue in commit:

a22a909dc094ee10af0e9c88b9f7a0322771657d.

LPM-01 JUNGLE EXCHANGE

PFB-01 MISSING VALIDATION ON THE RETURN VALUE OF
ORACLE

Category Severity Location Status

Volatile Code Medium core/PriceFeed.sol: 38~50 Acknowledged

Description

The function misses proper validations and checks when utilizing price data provided by oracles to ensure its accuracy and

timeliness. In the absence of such safeguards, smart contracts may utilize incorrect or outdated price information, which can

create economic vulnerabilities that malicious actors could exploit to manipulate or attack the protocol, potentially leading to

financial losses.

Recommendation

To address these vulnerabilities, it is recommended to add additional security checks within the smart contract to ensure that

the price data being processed is within reasonable limits and reflects the latest market conditions.

Alleviation

[Jungle Exchange Team, 04/07/2024]: The team acknowledged the finding.

PFB-01 JUNGLE EXCHANGE

CON-01 POSSIBLE INTEGER OVERFLOW AND DEAD LOOP

Category Severity Location Status

Logical

Issue
Minor

core/JungleSetting.sol: 144; core/LPManager.sol: 364, 373, 379; core/LPM

arket.sol: 364~365, 652~653; core/MarketTick.sol: 304; periphery/JungleR

eader.sol: 44; periphery/LPReader.sol: 188

Resolved

Description

The max value for uint8 is 255. The _indexTokens.length is of type uint256 and may be bigger than 255. Thus i++

may silently overflow and it becomes a dead loop.

Recommendation

Ensure that loop variables are appropriately typed to avoid potential overflow issues.

Alleviation

[Jungle Exchange Team, 04/07/2024]: The team heeded the advice and resolved the issue in commit:

98b4dc6d640891246dc23eeb68a40e27a820c50a.

CON-01 JUNGLE EXCHANGE

COR-03 QUESTION RELATED TO BID-ASK SPREAD

Category Severity Location Status

Logical

Issue
Minor

core/LPManager.sol: 190~195; core/LPMarket.sol: 133, 234~240; core/M

arketTick.sol: 113~164, 200~206, 234~240, 252~257, 285~291
Resolved

Description

The editPool() function in the smart contract is designed to update the bidSpread and askSpread parameters of a

pool's strategy. These changes subsequently affect the values of tickBid and tickAsk through the updateLiquidity

function. The state of tickPoolBitmap[tickBid] and tickPoolBitmap[tickAsk] in the MarketTick contract is altered

as a result of the updated tick values. However, the function fails to address the state change for the previous tickBid and

tickAsk values. This may cause inaccurate calculation in searching for the next tick.

Recommendation

We recommend the team to review the design and provide more illustrations on it.

Alleviation

[Jungle Exchange Team, 04/26/2024]: Issue acknowledged. Changes have been reflected in the commit hash:

https://github.com/jungle-official/jungle-synthetics/commit/ef6f80413c5c1260b33c0ebe8017314c6abb2c69

COR-03 JUNGLE EXCHANGE

https://github.com/jungle-official/jungle-synthetics/commit/ef6f80413c5c1260b33c0ebe8017314c6abb2c69

COR-05 CONTRADICTORY IMPLEMENTATION IN MATCHING
MECHANISM

Category Severity Location Status

Design

Issue
Minor

core/LPMarket.sol: 649~656; core/MarketTick.sol: 147~148, 227, 2

78
Acknowledged

Description

The white paper specifies that the order matching mechanism should prioritize newer liquidity pools to incentivize the

creation of new MM pools. However, the actual implementation deviates from this intended behavior. The variable

poolCreateTime is only utilized in reward calculation rather than during the order matching process. The function

_matchPools is designed to match orders with pools, but it prioritize older pools.

1 for (

2 uint8 i = 0;

3 i < poolStateIds.length && _matchParam.sizeRemaining != 0;

4 i++

5) {

6 bytes32 poolId = poolStateIds[i];

7 if (poolId == _matchParam.excludedPoolId) continue;

8 if (

9 !_checkPriceRangeAndOrder(

10 poolId,

11 _stepParam.price,

12 _openLong

13)

14) continue;

15

16 _matchOnePool(poolId, _matchParam, _stepParam, _openLong);

17 }

The above implementation is based on traversals on the tickPools , and this giving precedence to the pools created earlier

or those that have older last-changed timestamps.

Recommendation

We recommend the team reviewing the implementation and providing illustrations on related design.

Alleviation

[Jungle Exchange Team, 04/23/2024]: Issue acknowledged. I won't make any changes for the current version.

COR-05 JUNGLE EXCHANGE

The actual implementation is the final version and we should change the white paper.

COR-05 JUNGLE EXCHANGE

GLOBAL-01 MISSING IMPLEMENTATION OF INDIVIDUAL POOL
PRIORITY

Category Severity Location Status

Design Issue Minor Acknowledged

Description

The white paper outlines a specific order-matching process where individual liquidity pools are prioritized over a global

liquidity pool. This mechanism is crucial for ensuring that trades are executed in a manner that reflects the intended design

and encourages the creation of individual MM pools. Upon reviewing the smart contract code, the terms "global pool" and

"individual pools" are missing. Consequently, the contract's order-matching function does not adhere to the described priority

system, potentially leading to an execution of trades that do not align with the white paper's specifications.

Recommendation

It is recommended to update the smart contract to incorporate the individual pool priority mechanism as described in the

white paper. This involves introducing the necessary variables and logic to distinguish between individual pools and the

global pool. Additionally, the order-matching function should be modified to check and process orders based on the intended

priority, ensuring that individual pool orders are matched before any orders from the global pool.

Alleviation

[Jungle Exchange Team, 04/23/2024]: Issue acknowledged. I won't make any changes for the current version.

We abandon the terms "global pool" and "individual pools" and we will change the description in the white paper.

GLOBAL-01 JUNGLE EXCHANGE

JUN-04 THE SURPLUS NATIVE TOKENS ARE NOT RETURNED

Category Severity Location Status

Design Issue Minor core/Jungle.sol: 83~115, 338~362 Acknowledged

Description

In the payable function, there's a validation to ensure msg.value meets the minimum required amount of native tokens.

However, it's important to note that if msg.value exceeds this amount, the function currently lacks a mechanism to refund

the excess. This oversight could lead to unintentional loss of funds for the caller, as any surplus in msg.value is not

returned. Implementing a refund logic for the excess amount is crucial to prevent the potential loss of caller funds.

Recommendation

We recommend adding logic for refunding surplus or modifying the validation process to enforce that the amount of native

tokens paid by the caller exactly matches the required amount.

Alleviation

[Jungle Exchange Team, 04/07/2024]: Issue acknowledged. I won't make any changes for the current version.

The msg.value is used to execute limit order as the gas fee by keeper when target price match. So it's hard to pay exactly

native token by the caller.

msg.value is evaluated by the current gas fee. So it may be much or less than the gas fee deserved.

According to this consideration, we don't return the native tokens if they surplus.

JUN-04 JUNGLE EXCHANGE

JUN-05 POTENTIAL ORDERS FILLED AT WORSE PRICES

Category Severity Location Status

Logical Issue Minor core/Jungle.sol: 267 Acknowledged

Description

The executeLimitOrder function is intended to be called by the Keeper to execute user-submitted limit orders. However,

due to the sequential execution of orders by the Keeper, if multiple users submit orders with similar target prices, the first

order will be executed at the current market's more favorable price, while subsequent orders will be executed at less

favorable prices.

285 uint256 realPrice = _marketOrderIncrease(request);

Recommendation

We would like to confirm with the client if the current implementation aligns with the original project design.

Alleviation

[Jungle Exchange Team, 04/23/2024]: Issue acknowledged. I won't make any changes for the current version.

Maybe the subsequent orders will be executed at more favorable prices than the first executed order.

But whatever we should execute the limit order if the acceptPrice is reasonable..

JUN-05 JUNGLE EXCHANGE

LPA-06 POTENTIAL LOGICAL INCONSISTENCIES
liquidatePosition AND adl

Category Severity Location Status

Logical Issue Minor core/LPMarket.sol: 967 Acknowledged

Description

In the commit ef6f80413c5c1260b33c0ebe8017314c6abb2c69 : The liquidatePosition() function is called by the

Manager to liquidate proxy pool positions. It uses the proxy pool's price rather than an oracle price. Since these prices can

differ, this may result in discrepancies when calculating the proxy pool's profits. This is inconsistent with the logic of the

function adl() .

967 function liquidatePosition(

968 bytes32 _poolId,

969 bytes32 _posId

970) external onlyManager {

971 LPPosition memory lpPosition = lpPositions[_posId];

972 (

973 uint256 oraclePrice,

974 uint256 liquidationState,

975 uint256 data

976) = validateLiquidation(_poolId, _posId, false);

977 MatchedLiquidity memory mLiquidity = matchLiquidityIndexToken(

978 oraclePrice,

979 lpPosition.contractSize,

980 lpPosition.isLong,

981 false,

982 false,

983 _poolId

984);

985

986 _liquidatePosition(

987 _poolId,

988 _posId,

989 liquidationState,

990 data,

991 mLiquidity.averagePrice,

992 lpPosition

993);

994 }

Recommendation

LPA-06 JUNGLE EXCHANGE

We would like to confirm with the client if the current implementation aligns with the original project design.

Alleviation

[Jungle Exchange Team, 05/13/2024]: Issue acknowledged. I won't make any changes for the current version. We think it

does not matter in this case for ADL.

LPA-06 JUNGLE EXCHANGE

LPA-08 POTENTIAL AVERAGE PRICE IS NOT CORRECT

Category Severity Location Status

Logical Issue Minor core/LPMarket.sol: 769 Resolved

Description

The _createLPPosition() function is used to create new positions in a smart contract. However, when an existing position

is found, it merges with the new one without updating the average price. This logic flaw could lead to incorrect calculations

and inconsistent state within the contract.

769 if (lpPositions[posId].poolId != bytes32(0)) {

770 lpPositions[posId].contractSize += _openableSize;

771 lpPositions[posId].collateral += collateral;

772 }

Recommendation

Review the logic for merging positions in the _createLPPosition() function and ensure that all relevant values, including

the average price, are updated properly during the merge.

Alleviation

[Jungle Exchange Team, 04/07/2024]: The team heeded the advice and resolved the issue in commit:

ef6f80413c5c1260b33c0ebe8017314c6abb2c69.

LPA-08 JUNGLE EXCHANGE

LPM-02 POTENTIAL ALLOW UNAUTHORIZED WITHDRAWALS IN
claimReward FUNCTION

Category Severity Location Status

Logical Issue Minor core/LPManager.sol: 297 Acknowledged

Description

The claimReward() function can be called by anyone to retrieve rewards, which are withdrawn from the vault contract. As

the vault contract's tokens primarily consist of user-added liquidity, withdrawals may result in taking assets belonging to other

users.

297 function claimReward(bytes32 _indexToken, bytes32 _poolId,

298 uint256 _amount

299) external {

300 address lpMarket = lpMarkets[_indexToken];

301 require(lpMarket != address(0), "Invalid Pool.");

302 ILPMarket(lpMarket).claimReward(msg.sender, _poolId, _amount);

303 vault.takeJUSDOut(msg.sender, _amount);

304 }

Recommendation

Restrict access to the claimReward function to authorized users only to prevent unauthorized withdrawals of assets.

Alleviation

[Jungle Exchange Team, 04/07/2024]: Issue acknowledged. I won't make any changes for the current version.

LPM-02 JUNGLE EXCHANGE

LPM-03 INCORRECT BOOLEAN EXPRESSION

Category Severity Location Status

Logical Issue Minor core/LPManager.sol: 214 Acknowledged

Description

The boolean expression strategy.bidSpread % _tickSize == 0 || strategy.askSpread % _tickSize == 0 means that

either the bidSpread or the askSpread should be divisible by _tickSize . Based on the error message, the

implementation should require both bidSpread and the askSpread to be divisible by _tickSize .

Recommendation

We recommend the team changing || to && .

Alleviation

[Jungle Exchange, 04/23/2024]: Issue acknowledged. I won't make any changes for the current version.

tickSize is the minimum price spread. Price spread must be multiple of tickSize. It is illegal If tickSize is 10 and bidSpread

is 8. It is legal if tickSize is 10 and bidSpread is 20.

LPM-03 JUNGLE EXCHANGE

MTB-01 MISSING SERVICE FEE HANDLING MECHANISM

Category Severity Location Status

Design Issue Minor core/MarketTick.sol: 972~978 Resolved

Description

When liquidity providers remove liquidity, the platform will charge service fees. According to the white paper, "this portion of

the fees is exclusively aimed at LPs and will be partially reimbursed to liquidity pool creators based on the platform's

operational conditions. The remaining portion will serve as platform revenue to support long-term development." However,

the project lacks of related mechanism of service fees and those fees are currently being fully reimbursed to the pool.

Recommendation

We recommend the team to implement as white paper instructed to prevent the accumulation of fees in the vault contract.

Alleviation

[Jungle Exchange Team, 04/26/2024]: Issue acknowledged. Changes have been reflected in the commit hash:

https://github.com/jungle-official/jungle-synthetics/commit/73de5a0845dfa3f58c94a448ed73152fb8559450

MTB-01 JUNGLE EXCHANGE

https://github.com/jungle-official/jungle-synthetics/commit/73de5a0845dfa3f58c94a448ed73152fb8559450

PFB-02 THIRD-PARTY DEPENDENCY USAGE

Category Severity Location Status

Design Issue Minor core/PriceFeed.sol: 32 Acknowledged

Description

The contract is serving as the underlying entity to interact with one or more third party protocols. The scope of the audit treats

third party entities as black boxes and assumes their functional correctness. However, in the real world, third parties can be

compromised and this may lead to lost or stolen assets. In addition, upgrades of third parties can possibly create severe

impacts, such as increasing fees of third parties, migrating to new LP pools, etc.

44 (, int256 tokenPrice,,,) = aggregators[_tokenName].latestRoundData();

The contract PriceFeed interacts with third party contract with AggregatorV3Interface .

Recommendation

The auditors understood that the business logic requires interaction with third parties. It is recommended for the team to

constantly monitor the statuses of third parties to mitigate the side effects when unexpected activities are observed.

Alleviation

[Jungle Exchange Team, 04/23/2024]: We will monitor the statuses of third parties.

PFB-02 JUNGLE EXCHANGE

APPENDIX JUNGLE EXCHANGE

Finding Categories

Categories Description

Access

Control
Access Control findings are about security vulnerabilities that make protected assets unsafe.

Inconsistency
Inconsistency findings refer to different parts of code that are not consistent or code that does not

behave according to its specification.

Volatile Code
Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases and

may result in vulnerabilities.

Logical Issue Logical Issue findings indicate general implementation issues related to the program logic.

Centralization
Centralization findings detail the design choices of designating privileged roles or other centralized

controls over the code.

Design Issue
Design Issue findings indicate general issues at the design level beyond program logic that are not

covered by other finding categories.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of

256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command against the target file.

APPENDIX JUNGLE EXCHANGE

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, condentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with the

Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report

is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report

represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company

and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that

your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,

where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL

FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER

APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,

OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT

LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK MAKES NO

WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR

OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF, WILL MEET CUSTOMER’S OR ANY

OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT, BE COMPATIBLE OR WORK WITH ANY

SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL

CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR

DISCLAIMER JUNGLE EXCHANGE

UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S

REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR

RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE

CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR

CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME NO

LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND

MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY

CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING

FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR

CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY

OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO

CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT

CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER

BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE

BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,

SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION

UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,

REGULATORY, OR OTHER ADVICE.

DISCLAIMER JUNGLE EXCHANGE

CertiK Securing the Web3 World

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a

leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

Jungle Exchange Security Assessment CertiK Assessed on Jun 4th, 2024 Copyright © CertiK

https://www.certik.com/
https://www.twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

